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Treatment of 1-chlorovinyl p-tolyl sulfoxides, derived from ketones and chloromethyl p-tolyl sulfoxide,
with lithium enolate of carboxylic acid tert-butyl esters gave adducts in high yields. The adducts were
converted to 1-chlorocyclobutyl p-tolyl sulfoxides in four steps in high overall yields. Treatment of the
1-chlorocyclobutyl p-tolyl sulfoxides with cyclopentylmagnesium chloride in THF at �40 �C resulted in
the formation of cyclobutylmagnesium carbenoids. The magnesium carbenoid 1,2-CC insertion reaction
took place smoothly from the cyclobutylmagnesium carbenoids to afford alkylidenecyclopropanes in
good to high yields. An asymmetric synthesis of optically active alkylidenecyclopropane was successfully
achieved starting from optically active 1-chlorovinyl p-tolyl sulfoxide.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Alkylidenecyclopropanes, including methylenecyclopropanes,
are quite interesting compounds. They are structurally highly
strained; however, usually present as stable compounds at room
temperature. Because of their highly strained nature, alkylidenecy-
clopropanes show various reactivities and have long been used
widely in organic synthesis.1 Moreover, some biologically active
compounds comprising an alkylidenecyclopropane moiety as a
basic skeleton, such as G1499-2, amphimic acids, and 9-hydrox-
ymethylcyclopropylidene-methylenyladenine,2 have been known.
Therefore, new methods for the synthesis of alkylidenecyclopro-
panes are very much desired.

A variety of the methods for synthesis of alkylidenecyclopro-
panes have been reported;3 however, synthesis of optically active
alkylidenecyclopropanes is limited.4 We are also interested in the
chemistry of alkylidenecyclopropanes and reported their synthesis
based on the reaction of cyclopropylmagnesium carbenoids with
lithium a-sulfonyl carbanions.5 In continuation of our interest in
the chemistry of magnesium carbenoids in organic synthesis,6 re-
cently, we developed a new method for a synthesis, including
asymmetric synthesis, of alkylidenecyclopropanes by our original
method as shown in Scheme 1.

Thus, 1-chlorovinyl p-tolyl sulfoxides 2, synthesized from
ketones 1,7 are treated with lithium enolate of tert-butyl carboxyl-
ates to give adducts 3 in high yields. The tert-butyl ester moiety is
ll rights reserved.

: +81 3 5261 4631.
.

converted to an iodide group under conventional reactions to give
iodides 4, which are treated with a base to afford 1-chlorocyclobu-
tyl p-tolyl sulfoxides 5 in high yields. Finally, sulfoxides 5 are
treated with cyclopentylmagnesium chloride to give alkylidenecy-
clopropanes 6 in good yields. When optically active 1-chlorovinyl
p-tolyl sulfoxide 2 was used in this procedure, an asymmetric syn-
thesis of optically active alkylidenecyclopropane 6 was achieved. In
this Letter we report the above-mentioned procedure.

2. Results and discussion

At first, representative example of this procedure is shown
using 1-chlorovinyl p-tolyl sulfoxide 7, which was derived from
cyclohexanone, as the starting material (Scheme 2). Thus, 1-chloro-
vinyl p-tolyl sulfoxide 77a was treated with lithium enolate of tert-
butyl 3-phenylpropionate to afford adduct 8 in a quantitative
yield.8 Stereochemistry of adduct 8 (syn-relationship between the
chlorine atom and the benzyl group) was determined based on
our previous study.9 The adduct was treated with trifluoroacetic
acid in dichloromethane to give a carboxylic acid, which was re-
duced with BH3–THF in THF at 0 �C to give alcohol 9 in 91% overall
yield from 8. Attempt to direct reduction of ester 8 with DIBAL to
alcohol 9 resulted in low yield (up to 60%). The hydroxyl group
in 9 was converted to iodide group under the conventional reaction
and the resultant iodide was treated with 2 equiv of KHMDS to give
the desired 1-chlorocyclobutyl p-tolyl sulfoxide 10 in 94% overall
yield from 9 as a single product.10 Stereochemistry of 10 was deter-
mined by NOESY spectrum of the desulfinylated compound 13
(vide infra).
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The key reaction was carried out as follows. A solution of
i-PrMgCl in ether (3 equiv) was added to a solution of 1-chlorocyc-
lobutyl p-tolyl sulfoxide 10 in THF at �78 �C under Ar atmosphere.
After the reaction mixture was stirred for 15 min, the reaction was
quenched with satd aq NH4Cl. The reaction mixture was rather
clean and two products were obtained. The main product was
determined to be 2-benzyl(cyclopropylidene)cyclohexane 12
(48%) and the minor product was desulfinylated chlorocyclobutane
13 (24%). Alkylidenecyclopropane 12 is the expected product from
1,2-CC insertion reaction of the cyclobutylmagnesium carbenoid
11, which was derived from 10 by the sulfoxide–magnesium
exchange reaction, and 13 is the protonated product of 11. Quite
interestingly, methylenecyclopropane 14, which is another
expected product from the 1,2-CC insertion reaction of the magne-
sium carbenoid intermediate 11, was not observed at all. Configura-
tion of 13 was determined from its 1H NMR spectrum, especially by
NOESY spectrum (NOE was observed between the hydrogens on the
carbons bearing the chlorine atom and the benzyl group). Configu-
ration of the starting material 10 was determined to be as shown in
Scheme 2 from the stereochemistry of 13.11

As we recognized that the above-mentioned procedure would
become quite interesting and new way for a synthesis of alkylid-
enecyclopropanes, the proper conditions to the key reaction were
investigated and the results are summarized in Table 1. Entries
1–4 show the effects of four Grignard reagents other than i-PrMgCl
at �78 �C for 15 min. The sulfoxide–magnesium exchange reaction
did not take place with MeMgCl and PhMgCl. EtMgCl and cyclopen-
tylmagnesium chloride gave 12 in better yields compared to that of
i-PrMgCl (48%; see Scheme 2). We concluded that cyclopentylmag-
nesium chloride is the Grignard reagent of choice in this reaction.

Entries 5–9 show the effect of the temperature of the reaction
with cyclopentylmagnesium chloride in THF for 15 min. As shown,
when the reaction was carried out at �40 �C, the best yield (87%)
was obtained (entry 6). Entries 10–13 show the results for the
reaction time in THF at �40 �C. Both shortening and prolonging
of the reaction time did not give better results. Finally, we investi-
gated the effect of the solvent (entries 14 and 15) and found that
both ether and toluene were not effective to this reaction. We con-
cluded that the conditions in entry 6 are the conditions of choice in
this reaction.

Next, generality of this procedure was examined and the results
are summarized in Table 2. As the starting material for the synthe-
sis of 1-chlorocyclobutyl p-tolyl sulfoxides 15a–15g, cyclopenta-
none, cycloheptanone, cyclopentadecanone, and cyclohexanone
were used as cyclic ketones (entries 1–4). Acetone and 4-phenyl-
2-butanone were used as acyclic ketones (entries 5–7). tert-Butyl



Table 1
Examination of the optimum conditions for the synthesis of alkylidenecyclopropane 12 through the magnesium carbenoid 1,2-CC insertion reaction

PhCH2

S(O)Tol

Cl
PhCH2

H

ClPhCH2

Grignard Reagent (3 eq)
+

 Conditions

10
12 13

Entry Grignard reagent Conditions Yield (%)

Temp (�C) Time (min) Solvent 12 13

1 MeMgCl �78 15 THF —a —
2 PhMgCl �78 15 THF —a —
3 EtMgCl �78 15 THF 54 19

4 MgCl �78 15 THF 56 29

5 MgCl �60 15 THF 76 15

6 MgCl �40 15 THF 87 1

7 MgCl �20 15 THF 73 2

8 MgCl 0 15 THF 71 2

9 MgCl rt 15 THF 73 1

10 MgCl �40 5 THF 74 6

11 MgCl �40 10 THF 85 3

12 MgCl �40 30 THF 80 1

13 MgCl �40 60 THF 75 2

14 MgCl �40 15 Et2O 39b Trace

15 MgCl �40 15 Toluene 27c Trace

a No reaction was observed and the starting material was quantitatively recovered.
b The starting material was recovered in 58%.
c The starting material was recovered in 69%.

4214 N. Nakaya et al. / Tetrahedron Letters 50 (2009) 4212–4216
3-phenylpropionate, tert-butyl 4-phenylbutyrate, and tert-butyl
propionate were used as esters.

The sulfoxide–magnesium exchange reaction was carried out
under the best conditions as mentioned above (Table 1, entry 6).
As shown in Table 2, all 1-chlorocyclobutyl p-tolyl sulfoxides 15,
Table 2
Synthesis of alkylidenecyclopropanes 16 from 1-chlorocyclobutyl p-tolyl sulfoxides
15 through the magnesium carbenoid 1,2-CC insertion reaction

R2

R3

S(O)Tol

Cl

R1
MgCl

R1 R2

R3

15

THF, -40 °C, 15 min

16

(3 eq)

Entry 15 16

R1 R2 R3 Yield (%)

1 15a –(CH2)4– PhCH2 62
2 15b –(CH2)6– PhCH2 39a

3 15c –(CH2)14– PhCH2 73
4 15d –(CH2)5– PhCH2CH2 86
5 15e CH3 CH3 PhCH2 77
6 15f PhCH2CH2 CH3 CH3 82b

7 15g CH3 PhCH2CH2 CH3 75c

a The structure of the other products could not be determined.
b A 2:1 mixture of two geometrical isomers was obtained.
c A 1:1 mixture of two geometrical isomers was obtained.
except one case (entry 2), gave the desired alkylidenecyclopro-
panes 16 in 62–86% yields. From these results, the procedure pre-
sented herein proved to be quite useful for obtaining various
alkylidenecyclopropanes. When diastereomers 15f and 15g were
treated with cyclopentylmagnesium chloride, a mixture of two
geometrical isomers was obtained (entries 6 and 7). These results
suggested that this 1,2-CC insertion would not be a concerted reac-
tion but a stepwise reaction.

As an application of this procedure, an asymmetric synthesis of
optically active alkylidenecyclopropanes was investigated (Scheme
3). Thus, optically active 1-chlorovinyl p-tolyl sulfoxide 17 was
synthesized from cyclohexanone with (R)-chloromethyl p-tolyl
sulfoxide.12 Addition reaction of 17 with lithium enolate of tert-bu-
tyl 3-phenylpropionate gave adduct 18 and all the absolute stereo-
chemistry were unambiguously determined as shown in Scheme 3
based on our previous work.9,13 Optically active 18 was converted
to optically active (1R,3S,Rs)-1-chloro-3-benzyl-1-(p-tolylsulfi-
nyl)spiro[3.5]nonane 19 in the same reaction described above.

Finally, optically active 19 was treated with cyclopentylmagne-
sium chloride in THF at �40 �C to give optically active (S)-2-ben-
zylcyclopropylidenecyclohexane 20 in 87% yield.14 The optical
purity of 20 was easily determined to be over 97% by using a chiral
stationary column (CHIRALCEL OD (Daicel); hexane as a developing
solvent). As the optical purity of the starting material, (R)-chloro-
methyl p-tolyl sulfoxide, was 97–99%,12 the procedure shown in
Scheme 3 is thought to proceed without racemization.
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In conclusion, we have developed a new method for a synthesis
of alkylidenecyclopropanes from 1-chlorovinyl p-tolyl sulfoxides.
In addition, by using optically active 1-chlorovinyl p-tolyl sulfox-
ides asymmetric synthesis of them can be realized. Synthesis of
alkylidenecyclopropanes from 1,1-dibromocyclobutanes with
methyllithium has been known.15 The presented procedure is the
first example for the synthesis of alkylidenecyclopropanes through
the 1,2-CC insertion of cyclobutylmagnesium carbenoids with one-
carbon contraction.
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